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Abstract 

Drowsiness can impair reaction time, increasing the risk of severe accidents. Many current studies concentrate on a single symptom of 

drowsiness, which can lead to false alerts. This paper presents a new method for detecting drowsiness in real time. The proposed approach 

utilizes four deep learning architectures based on convolutional neural networks: AlexNet for extracting environmental features, 

ResNet50V2 for recognizing hand gestures, VGG-FaceNet for facial feature extraction, and FlowImageNet for analyzing behavioral 

features. To maximize the benefits of the aforementioned methods, we suggest using a single-layer neural network. Since drowsiness is a 

dynamic phenomenon, capturing its evolving features requires a dynamic neural network with adaptive delays, specifically an Adaptive Time 

Delay Neural Network (ATDNN) with adjustable weights. Our implementation of this neuro-dynamic approach on the NTHUDDD and our 

custom datasets demonstrates that it achieves greater accuracy (99.1% and 98.6%, respectively) compared to existing methods in the 

literature. 
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INTRODUCTION 

Drowsiness represents a transitional state between full 

wakefulness and consciousness, causing slower reaction 

times and impaired memory [1]. The US National Highway 

Traffic Safety Administration reports that drowsiness 

contributes to about 100,000 traffic accidents each year 

worldwide, leading to over 1,500 deaths and more than 

70,000 injuries [2]. This problem is widespread globally. 

Since drowsiness greatly affects driving safety, detection 

systems are essential as they offer early warnings before 

drowsiness becomes critical and hazardous.  

Machine Learning (ML) has been applied across numerous 

fields, offering substantial benefits like high accuracy, 

adaptability to various datasets, effectiveness with both small 

and large datasets, and scalability regarding data volume and 

computational resources [3]. In drowsiness detection 

systems, as in other areas, machine learning techniques are 

utilized. Different models, such as Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM) 

networks, and Recurrent Neural Networks (RNNs), are used 

to train on datasets and identify key features related to 

drowsiness. 

Datasets for developing driver drowsiness detection 

systems fall into three primary categories: 1) vehicle-based 

like steering wheel angle, lateral and longitudinal 

acceleration 2) facial-based like rapid blinking and yawning 

3) biological signals such as electroencephalography (EEG) 

and electrocardiography (ECG) [4].  While biological signals 

offer high accuracy, they are also intrusive, as they 

necessitate the attachment of sensors to the driver, which can 

be uncomfortable and distracting during driving. In many 

works they used a combination of these methods for example 

a combination of vehicular and facial, vehicular and 

biological, and vehicular and biological methods. This way 

can help to get a more accurate result. Also, considering 

different symptoms in one group simultaneously can give a 

better result compared with experimenting with just one 

symptom. 

Despite various methods developed by researchers for 

detecting drowsiness, existing approaches continue to 

encounter significant challenges. Relying on a single 

symptom of drowsiness often results in unreliable and 

inaccurate outcomes. Additionally, static machine learning 

models lack memory and are unable to track drowsiness over 

time. To overcome these limitations, this paper presents a 

new approach for drowsiness detection and its contributions 

are as follows: 

1-This paper utilizes four deep learning architectures based 

on convolutional neural networks: AlexNet for extracting 

environmental features, ResNet50V2 for recognizing hand 

gestures, VGG-FaceNet for extracting facial features, and 

FlowImageNet for analyzing behavioral features. Each 

model is pretrained through transfer learning, with extra 

layers incorporated to improve performance, thereby 

harnessing the combined strengths of an integrated 

framework. 

2-To fully leverage the advantages of the previously 

mentioned methods, we propose employing a single-layer 

neural network. Given that drowsiness is a dynamic process, 

capturing its changing characteristics necessitates a dynamic 

neural network with adaptive delays, specifically an 

Adaptive Time Delay Neural Network (ATDNN) with 

adjustable weights. 
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The rest of the paper is structured as follows: Section 2 

provides a literature review of previous studies related to this 

work. Section 3 outlines the proposed method within the 

overall detection framework. Section 4 details the 

experimental results from the training and testing phases of 

the proposed method. At last, the paper will be concluded. 

LITERATURE REVIEW 

Researchers have explored various methods for detecting 

drowsiness, including facial, biological, and vehicular 

techniques [5]. Facial detection methods identify drowsiness 

by analysing features such as eye blinking rate, yawning, 

nodding, head movements, and eyebrow raising [6]. A 

summary of the factors considered in these three types of 

drowsiness detection techniques is illustrated in Figure 1. 

Facial detection approaches rely on video recordings of the 

driver to assess signs of drowsiness. However, using cameras 

for this purpose presents challenges, especially in conditions 

with variable lighting or when drivers wear glasses, 

sunglasses, masks, or have their heads turned away from the 

camera. Facial-based methods primarily use two approaches: 

facial landmarks and machine learning techniques. 

Landmark-based methods typically calculate the Eye Aspect 

Ratio (EAR) in the eye region and the Mouth Aspect Ratio 

(MAR) in the mouth region to detect yawning and predict 

drowsiness. 

Biological-based drowsiness detection methods often 

require direct physical contact, making them intrusive. These 

techniques monitor physiological indicators such as heart 

rate, heart rate variability, pulse rate, respiration patterns, 

breathing frequency, body temperature, and electrical activity 

of the brain and eyes. Devices like Electroencephalograms 

(EEG), Electrooculograms (EOG), Electromyograms 

(EMG), and Electrocardiograms (ECG) are commonly used 

for these measurements. However, a major limitation of this 

approach is the need for drivers to be physically connected to 

monitoring equipment, which can be uncomfortable and 

impractical for continuous use. These measurement tools fall 

into two main categories: signal-based and image-based. The 

former relies on signal processing, while the latter depends 

on image analysis. 

In contrast, vehicle-based methods offer a non-intrusive 

alternative, as they do not require direct interaction between 

the driver and monitoring sensors. These techniques assess 

driving behavior by analyzing parameters such as steering 

angle fluctuations, steering angular velocity, lateral and 

longitudinal acceleration, deviation angle, displacement from 

the road’s centerline, and vehicle speed [5]. This approach 

allows for drowsiness detection without interfering with the 

driver’s comfort or mobility. 

In [7], a real-time drowsiness detection system was 

developed using facial features like Eye Aspect Ratio (EAR) 

and Mouth Aspect Ratio (MAR). Videos were recorded in a 

real driving environment and converted into frames. Facial 

landmarks were extracted using a Haar Cascade classifier and 

the Dlib library, combined with a logistic regression 

classifier. This approach achieved 92% accuracy with Dlib 

but dropped to 86% using Haar Cascade, due to its poor eye 

detection. A limitation of this method is that relying on MAR 

and EAR metrics may lead to inconsistent accuracy, as 

threshold values can vary between individuals. 

In [8], the study focused on detecting drowsiness through 

the eyes using the MediaPipe library [9] to extract the eye 

region. Researchers trained three deep learning 

models—ResNet50v2, InceptionV3, and VGG-16—on this 

region, achieving real-time detection. MediaPipe’s face mesh 

method was employed to identify 468 facial landmarks, from 

which four were selected to define the eye region. 

ResNet50v2 achieved the highest accuracy of 99.71%. 

However, the study mainly focused on the eyes, neglecting 

other potential drowsiness indicators. 

In [10], a drowsiness detection system was developed 

using four deep learning models, combined through a simple 

averaging method. FlowImageNet analysed facial 

expressions and behaviours like nodding, while AlexNet 

focused on environmental factors such as lighting and 

glasses. VGG-FaceNet extracted facial features like lips and 

eyebrows, and Res-Net captured hand gestures related to 

yawning. A threshold of 0.24 was used to indicate 

drowsiness, yielding an accuracy of 85%. This relatively low 

accuracy suggests limited precision, possibly due to the 

model's focus on specific features while neglecting others 

like head movements and drooping cheeks. 

Most studies primarily focus on the eyes and mouth, 

overlooking other drowsiness indicators such as raised 

eyebrows, head movements, and drooping cheeks, which can 

affect the accuracy of predictions. While bio-signal methods 

like EEG and ECG provide high accuracy, these devices are 

expensive, not typically available in vehicles, and are often 

intrusive, causing discomfort for the driver. 

To assess driver drowsiness, we use the levels described in 

[11], which are based on [12] but with some modifications to 

the scales. The authors categorized drowsiness into five 

levels, as detailed in Table 1. Fig.1 illustrates the levels of 

drowsiness for both the international dataset and the dataset 

prepared by the authors of this paper. 
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Table 1. Drowsiness levels [11]. 

 
 

 
Figure 1. Five levels of drowsiness in two datasets 

In this study, we introduce a framework that incorporates 

four distinct models. Rather than relying on a straightforward 

and conventional approach of averaging and merging 

multiple models, we implement an intelligent weighting 

mechanism. This approach adjusts the weight of each branch 

within a single-layer neural network, which is positioned at 

the output of the four selected models. Given the dynamic 

nature of the drowsiness process, we develop an Adaptive 

Time-Delay Neural Network to extract adaptive rules and 

establish a neuro-dynamic structure. The specifics of the 

proposed framework are detailed in the following section. 

FRAMEWORK 

Instead of using a basic voting method, this study employs 

a smart weighting approach by adding a layer at the output of 

the four models. Recognizing that drowsiness develops 

gradually over time, a neuro-dynamic structure is adopted 

with adaptive weight adjustment rules. In the structure of 

ATDNN, each neuron is described by a delay associated with 

all the weights. The framework is depicted in Fig.2. 

Next, we analyse the layers added to each model through 

transfer learning and outline the weight adjustment rules for 

each branch in the dynamic mode. We selected the 

Exponential Linear Unit (ELU) as the activation function 

because it yielded better results. Notably, all models use the 

sparse categorical entropy loss function, which is optimal for 

multi-class classification and offers better performance than 

other loss functions. The formula for this loss function is 

given in (1). The formula of this loss function is shown in (1) 

in which iy
is the true label and 

ˆ
iy
is the predicted value. 

     (1) 

 
Figure 2. Framework of the proposed method 

Adaptive Time-Delay Neural Networks (ATDNNs) have 

been introduced and applied in various fields, such as system 

identification for wind turbines [13] and turbo generators 

[14]. These networks closely resemble the structure of 

multi-layer feedforward neural networks, with only minor 

differences. In a typical neural network, each neuron 

computes the sum of its weighted inputs and processes this 

sum through a nonlinear activation function. In contrast, 

ATDNNs incorporate a time-delay for each weight 

associated with a neuron. The specific delays are chosen 

based on the application at hand, enabling the network to 

capture relationships between events occurring over time. 

This dynamic representation of input and output in a neuron 

is achieved by introducing a delay in each neuron's 

connection [13]. As illustrated in Fig.2, the time-delay is 

integrated, and the input-output relationship of the neuron is 

described by (2). 

1

1
( , ) log( , )

( _ )

N

i i
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In (2), we represent the weights of neurons,  is the delay, 

𝜎 is the nonlinear activation function, 
( )ix t −

 is the ith 

input with a delay, iw
 is ith weight, and the summation is for 

i from 1 to Nth layer. It is important to note that in this 

formula, the output of the neuron at time t depends on 

previous input values, resulting in dynamic behaviour. This 

dynamic method is subsequently adjusted adaptively to 

appropriately represent various classes of nonlinear systems. 

This phenomenon is significant in drowsiness detection, as it 

does not occur suddenly but rather imposes itself on the 

driver dynamically, reducing alertness.  

The layers shown are added to the pre-trained 

ResNet50V2, VGG-FaceNet, AlexNet, and FlowImageNet 

models using transfer learning to enhance performance (see 

Fig.3, Fig.4, Fig.5, and Fig.6). We compute the dynamic 

weighting rules to develop the smart weighting model. The 

dynamic weighting rules for each structure are detailed in (3), 

(4), (5), (6), (7), (8), (9) and (10). These weighting rules show 

the output of the jth neuron in the Lth layer at time t is 

denoted by 
( )l

jO t
. The weight and associated delay 

connecting the jth neuron in the lth layer to the ith neuron in 

the (L-1)th layer are denoted by 

l

jiw
and 

l

ji
, respectively. It 

is noticeable that j varies from 1 to NL, i varies from 1 to NL-1, 

and 

l

ji
 varies from 0 to max

. Also, 
( )l

jnet t
is the 

weighted input of the jth neuron in the lth layer at time t. The 

weights
l

kjw
 and delays

l

kj
 adaptation laws in the 

following equations in this structure and others are based on 

these parameters. 

 
Figure 3. The layers added to a pre-trained ResNet50V2 

structure 
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Figure 4. The layers added to a pre-trained VGG-FaceNet 

structure 
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Figure 5. The layers added to a pre-trained AlexNet structure 
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Figure 6. The layers added to a pre-trained FlowImageNet 

structure 
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RESULTS 

We evaluated our proposed method using multiple 

datasets, including the widely recognized NTHUDDD 

dataset on drowsiness and a custom dataset we created as in 

Fig. 7. The NTHUDDD dataset is an academic dataset 

developed by the Computer Vision Lab at National Tsing 

Hua University in China [15]. Initially introduced at the 

Asian Conference on Computer Vision in 2016, it was 

designed for detecting driver drowsiness using video 

recordings. This dataset comprises high-speed infrared video 

footage in AVI format, with a resolution of 480 × 640 pixels. 

To evaluate the effectiveness of the proposed method on a 

custom dataset, we compiled data in a real driving 

environment involving 15 individuals—12 males and 3 

females. This dataset includes subjects under diverse 

conditions such as daylight, nighttime, and both with and 

without glasses. During data collection, we made a concerted 

effort to capture behaviours like yawning, raised eyebrows, 

slow blinking, head movements, and nodding. 

EVALUATION 

To evaluate our classification task, we used a confusion 

matrix and examined four metrics: accuracy, precision, 

recall, and F1-score. The results are summarized in Table 2. 

The confusion matrix, which includes true positives (TP), 

true negatives (TN), false positives (FP), and false negatives 

(FN), is illustrated for two different scenarios (see Fig.8). 

Fig.9 and Fig.10 show the accuracy and loss metrics 

throughout the training process for these scenarios. The goal 

during training is to minimize the output loss when 

processing training data. The training results for both 

scenarios show a steady increase in accuracy and a consistent 

decrease in loss for both training and validation, indicating 

that the proposed method is effective. Specifically, in 

scenario 1, the TP and TN values for predicting drowsy and 

not drowsy states are both 99% as in Fig. 8. 

 
Figure 7. Frames of our dataset 

Table 2. The results of evaluation parameters on the 

proposed method with two datasets. 

 

 
Figure 8. Confusion matrix for two scenarios 
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Figure 9. Metrics for scenario1: Accuracy and Loss 

 
Figure 10. Metrics for scenario 2: Accuracy and Loss 

Tables 3 and 4 compare the accuracy of two approaches: 

simple voting and the static model. The results clearly 

demonstrate that the static model significantly outperforms 

the simple voting method across both datasets. The 

implementation results of the proposed structure on these 

datasets are shown in Fig.11. A key advantage of this 

structure is its ability to accurately detect drowsiness even 

when yawning with hands covering the face, as evidenced by 

the high accuracy shown in Fig.12. 

Table 3. Comparison of accuracy between two states on 

NTHUDDD dataset. 

 

Table 4. Comparison of accuracy between two states on our 

dataset. 

 

 
Figure 11. Evaluation of proposed structure on two datasets 

 
Figure 12. Detecting drowsiness even yawning with hand 

CONCLUSION 

This study employed four convolutional neural network 

architectures—AlexNet, Res-Net50V2, FlowImageNet, and 

VGG-FaceNet—and combined their results using a 

neuro-dynamic structure. Initially tested on the NTHUDDD 

dataset, a leading resource for sleepiness detection, the 

proposed approach proved to be more effective than the 

individual methods. The method was also validated on a 

custom dataset created for this study, demonstrating its 

robustness across various datasets. The dynamic technique 

showed substantial improvements over previous methods 

like averaging. Ultimately, the neuro-dynamic architecture 

achieved accuracies of 99.1% and 98.6% on the two datasets, 

respectively. Given its high accuracy, the system is 

well-suited for real-world applications and could be 

integrated into hardware for use in vehicles. In future work, 

this system is expected to be implemented for signal data, 

which is distinct from image data. Additionally, by 

incorporating all three categories of data—vehicle-based, 

biological-based, and facial-based—we can achieve a more 

comprehensive assessment of drowsiness. Furthermore, this 

system could be applied to lateral and longitudinal vehicle 

speed data, as well as vehicle trajectory tracking, since 

driving behaviour can serve as an indicator of driver 

drowsiness. 
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